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S5 in the AdS5 × S5 space-time and contains fundamental strings as U(1) flux to form a

baryon vertex. The new solution given here is different from the baryon vertex since it

consists of two same side (north or south) poles of S5 as cusps, which are put on different

points in our three dimensional space. This implies that the same magnitude of electric

displacement exists at each cusp, but their orientations are opposite due to the flux num-

ber conservation. This configuration is therefore regarded as a D5-D5 bound state, and

we propose this as the vertex of a baryonium state, which is made of a baryon and an

anti-baryon. By attaching quarks and anti-quarks to the two cusps of this vertex, it is

possible to construct a realistic baryonium.
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1 Introduction

In the context of string/gauge theory correspondence [1–3], the baryon has been studied

as a system of fundamental strings (F-strings) and D5-branes wrapped on S5 in AdS5×S
5

space-time [4–8, 11–14]. They correspond to quarks and the baryon vertex respectively.

The F-strings are partially dissolved as a U(1) flux in the D5 brane, and their remaining

parts flow out from one (or two) cusp(s) on the surface of the D5 brane as separated free

strings. The baryon vertex has complicated structures which are given as solutions of the

equations of motion for the D5 brane embedded in an appropriate background, which is

dual to the confining gauge theory (for example [15–17]). This picture has been recently

studied furthermore [18] along the Born-Infeld approach given in [6]–[11], and also extended

to finite temperature theory [19, 20]

Here, we show new kinds of configurations, which are obtained as solutions of the

same equations with the one which gives baryon vertex solutions. But the new solutions

given here are different from the baryon vertex. The baryon vertex wraps whole S5 once.

Namely, it covers all range of the polar angle (θ) of the S5, 0 ≤ θ ≤ π, once.

On the other hand, the configuration of the new solution covers twice one polar side,

for example in the range of θ0 ≤ θ ≤ π where 0 < θ0. And, at any θ in this range,

this configuration exists at two different point in our three dimensional space. Then this

configuration looks like a line with a finite length. On this line, the point of θ = θ0 is at its

center and the two end points are given by the same θ = π. In other words, it starts from one

end at θ = π and arrives at θ = θ0 (the center of the configuration) then goes to the other
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end point θ = π along another half path. This solution can be interpreted as the connection

of two U(1) fluxes with opposite charge. This fact implies that it describes the same polar

sides (θ = π) of connected two S5s wrapped by D5 and anti-D5 (D5) branes respectively.

This can be regarded as a D5/D5 bound states. Similar D-brane embeddings have

been found for different D-branes in different backgrounds [21–23]. The essential point of

such solutions is that the configuration covers two different points in our space at the same

point of a world volume coordinate (here θ) of the D-brane. In this sense, our solution is

essentially the same type with the former examples.

The two end points are the cusps, where opposite sign of U(1) fluxes exist. Then the F-

strings attached at these two cusps have also opposite orientations with the same number.

This is considered as the baryonium or the bound state of a baryon and an anti-baryon.

The energy and the configuration of this baryonium vertex depend on boundary condi-

tions of the equations of motion. So, varying the boundary conditions, the relation between

the vertex energy and the distance of the two cusps is examined. And we could find a mini-

mum vertex energy at a finite distance between the two cusps. This implies that the baryon

and anti-baryon bound state is stable against vanishing to the vacuum.

In section 2 we give our model and D5-brane action with non-trivial U(1) gauge field.

And the equations of motion for D5 branes are given. In section 3, we give D5/D5 so-

lutions as baryonium vertex. And its configuration and energy, which depends on the

configurations, are examined. In the section 4, the differences between the baryonium and

split baryons are discussed. And in the final section, we summarize our results and discuss

related directions.

2 Model

2.1 Bulk background

We derive D5-D5 solutions as baryonium from the equations of motion given by the action

of D5-brane which is embedded in a supersymmetric 10d background of type IIB theroy.

The background solution should be dual to the confining gauge theory since the baryonium

examined here is a bound state of quarks. While there may be some such solutions, we

consider the following background [15–17],

ds210 = eΦ/2

(

r2

R2
ηµνdx

µdxν +
R2

r2
dr2 +R2dΩ2

5

)

, (2.1)

which is written in string frame. At the same time, the dilaton Φ and the axion χ are

given as

eΦ = 1 +
q

r4
, χ = −e−Φ + χ0 , (2.2)

and with self-dual Ramond-Ramond field strength

G(5) ≡ dC(4) = 4R4

(

vol(S5)dθ1 ∧ . . . ∧ dθ5 −
r3

R8
dt ∧ . . . ∧ dx3 ∧ dr

)

, (2.3)

where vol(S5) ≡ sin4 θ1vol(S
4) ≡ sin4 θ1 sin3 θ2 sin2 θ3 sin θ4.
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This solution, (2.1)–(2.2), is useful since the confinement of quarks are realized due to

the gauge condensate q ≡ 〈F 2
µν〉 [16, 17], which is given by the coefficient of 1/r4 for the

asymptotic expansion of the dilaton at large r. And furthermore, N=2 supersymmetry is

preseved in spite of the non-trivial dilaton is introduced. We can assure through the Wilson

loop that q1/2 is proportional to the tention of the linear rising potential between the quark

and anti-quark [17]. In the present case, q is essential to fix the size of the baryonium and

stabilize it energetically as shwon below.

We notice that the axion χ corresponds to the souce of D(-1) brane and it is Wick

rotated in the supergravity action. This is necessary to preserve the supersymmetry.

2.2 D5 brane action

The baryon is constructed from the vertex and N fundamental strings, and the vertex is

given by the D5 brane wrapped on the S5 of the above metric. The N fundamental strings

terminate on this vertex and they are dissolved in it [4, 5] as U(1) flux. The D5-brane

action is thus written as by the Dirac-Born-Infeld (DBI) plus WZW term [7]

SD5 = −T5

∫

d6ξe−Φ

√

− det
(

gab + F̃ab

)

+ T5

∫

d6ξÃ(1) ∧C(5) , (2.4)

gab ≡ ∂aX
µ∂bX

νGµν , Ca1...a5
≡ ∂a1

Xµ1 . . . ∂a5
Xµ5Gµ1...µ5

.

where F̃ab = 2πα′Fab and T5 = 1/(gs(2π)5ls
6) is the brane tension.

The D5 brane is embedded in the world volume ξa = (t, θ, θ2, . . . , θ5), where (θ2, . . . , θ5)

are the S4 part with the volume of Ω4 = 8π2/3, where we set as θ1 = θ. Restrict our

attention to SO(5) symmetric configurations of the form r(θ), x(θ), and At(θ) (with all

other fields set to zero). Then the above action is written as

S = T5Ω4R
4

∫

dt dθ

{

− sin4 θ

√

eΦ (r2 + r′2 + (r/R)4x′2) − F̃ 2
tθ − F̃tθD

}

, (2.5)

where the WZW term is rewritten by partial integration with respect to θ, and Ω4 = 8π2/3

is the volume of the unit four-sphere. The factor D(θ) is defined by

∂θD = −4 sin4 θ , (2.6)

and is related to F̃tθ by the equation of motion for Ãt as

D =
sin4 θ F̃tθ

√

eΦ (r2 + r′2 + (r/R)4x′2) − F̃ 2
tθ

. (2.7)

We call this D as displacement, and it is given by solving (2.6) as follows ,

D(ν, θ) ≡

[

3

2
(νπ − θ) +

3

2
sin θ cos θ + sin3 θ cos θ

]

. (2.8)

The meaning of the integration constant, defined in the range of 0 ≤ ν ≤ 1, is given below.
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Next, the action is rewritten by eliminating the gauge field in terms of (2.7) to obtain

an energy functional of the embedding coordinate only:1

U =
N

3π2α′

∫

dθ eΦ/2
√

r2 + r′2 + (r/R)4x′2
√

Vν(θ) . (2.9)

Vν(θ) = D(ν, θ)2 + sin8 θ (2.10)

where we used T5Ω4R
4 = N/(3π2α′). Using this expression (2.9), we consider the meaning

of the integration constant ν given in (2.6). In the below, we solve the equation of motion

for r(θ) and we find that it has two cusps or singular points at r(θ) = r(π) and r(0),

namely at θ = π and θ = 0. At these points, r′ = ∂θr diverges and x′ ≃ 0 for q = 0. The

configuration near these positions represents the bundle of the fundamental strings. The

numbers of the fundamental strings at the cusps are estimated as follows. At θ = π and

for q = 0 (Φ = 0), we obtain the following approximate formula

U ≃
N

3π2α′

∫

dr
3

2
(1 − ν)π =

N

2πα′
(1 − ν)

∫

dr . (2.11)

And similary, we obtain the following at θ = 0,

U ≃
N

2πα′
ν

∫

dr . (2.12)

Since 1
2πα′

∫

dr represents the bundle of a fundamental string, the total number of fun-

damental strings is given by N , which are separated to N(1 − ν) and Nν to each cusp

point. The meaning of ν is then the ratio of this separation, so it must be defined as

0 ≤ ν(≡ k/N) ≤ 1, where k(≤ N) is an integer.

By the definition of U , eq. (2.9), U is positive, and it is proportional to |D(ν, 0)| or

|D(ν, π)|. Then the total number of the flux is counted as N when we sum up the one of

the two cusps at θ = 0 and θ = π. However, we notice here the orientation of the flux of

U(1) current, then D defined by (2.7) could takes two possible value, D = ±|D|, depending

on the orientation of the flux. For the case of opposite orientation, the total flux number

would be counted as −N . This is regarded as the anti-baryon vertex.

Then two possible flux numbers are assinged as ±N(1−ν) and ±νN at each cusp. For

the split baryon, which extends between the cusps at θ = 0 and π, we find ±N since the

baryon must be a color singlet. However, we found new solutions, which extend between

the cusps at the same θ(= 0 or π) as shown below. In this case, for the solution with two

cusps at θ = π, we must choose the flux-combination as ±N(1 − ν) and ∓N(1 − ν). And

for the one with the cusps at θ = 0, the flux should be assigned as ±νN and ∓νN . Then

the total flux is zero in both cases, and we call these solutions as baryonium.

In the case of q > 0, r′(π) or r′(0) does not diverges any more, but these points, θ = π

and θ = 0, are singular and tension to deform the D5 brane is observed. This tension can

be cancelled out by adding the fundamental strings whose number is given by the bundles

1
U is obtained by a Legendre transformation of L, which is defined as S =

R

dtL, as U = ∂L

∂F̃tθ

F̃tθ − L.

Then equations of motion of (2.5) provides the same solutions of the one of U .

– 4 –
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observed for q = 0. This picture is very naturally understood since the system of the brane

and the fundamental strings deforms continuously with the scale parameter q.

Indeed above mentioned statements can be explisitly checked. For this purpose we

calculate the tensions at the cusps [18, 19, 27] in appendix B. To compare tensions, we

take a “vertical limit”, namely, r′1 → ∞, r
(1)
x → ∞. Then the following equality holds;

δU

δr1
= (1 − ν)N

δUF

δr1
. (2.13)

The tensions in the x-direction vanish in the vertical limit. The above equality means the

tension of the cusp equals to (1 − ν)N times that of F-string automatically in the vertical

limit in the case of q > 0. Similary, we find the νN times tension of F-string on the

other cusp.

3 Baryonium states

Equations of motion. In terms of (2.9), we could obtain two kinds of baryon configura-

tions [7, 18]. In both cases, we should notice that the solutions r(θ) and x(θ) cover whole

region of θ, 0 ≤ θ ≤ π. However there are other kinds of solutions, which cover only a part

of the variable θ, i.e. (i) θ0 ≤ θ ≤ π or (ii) 0 ≤ θ ≤ θ1, where θ0 > θ1.

Here we identify these type of solutions embedded in (i) or (ii) as the baryonium.

Namely, for the baryonium solution, θ does not cover all the region for both cases. For

example, in the case of (i), the solution x(θ) starts at x(π)(= x− < 0) and passes x(θ0) ≡ 0

smoothly, then arrived at x(π)(= x+ > 0). So, this configuration extends from x− to x+ in

our real three space. Here we should notice that the two end points are at θ = π then the

flux numbers at these points must be the same but with opposite direction. This corre-

sponds exactly to the baryonium as mentioned in the introduction. Similarly, we can con-

sider the baryonium of region (ii), whose end points are at θ = 0 with different flux numbers.

The difference of the baryon and baryonium solutions is reduced to the difference of

their boundary conditions. Generally speaking, in solving the differential equations, the

boundary condition determines the integration constants which correspond to the constant

of motion like energy. In the present case also, we introduce such a constant, which

discriminates the solution of baryon and baryonium.

In order to introduce such a constant, we rewrite (2.9) by changing the integration

variable from θ to x as follows

U =
N

3π2α′

∫

dx eΦ/2
√

r2θ̇2 + ṙ2 + (r/R)4
√

Vν(θ), (3.1)

where dots denotes the derivative with respect to x. We can introduce an integral constant

h as a “Hamiltonian” for the corresponding “time variable” x as follows

h = ṙpr + θ̇pθ − L , (3.2)

where

L = eΦ/2
√

r2θ̇2 + ṙ2 + (r/R)4
√

Vν(θ) (3.3)

pr =
∂L

∂ṙ
= ṙQ , pθ =

∂L

∂θ̇
= r2θ̇Q , (3.4)

– 5 –
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Figure 1. Vν(θ) for ν = 0.2, 0.4, and 0.5. The horizontal line shows a sample line of Vν(θ0) =
R4h2

r4

0
+q

= 2.0. The crossing points between this line and the curve of Vν represnets θ0.

and

Q =

(

R

r

)2
√

eΦVν −

(

p2
θ

r2
+ p2

r

)

(3.5)

Then h is written in terms of the momentum as

h = −
( r

R

)2

√

eΦVν −

(

p2
θ

r2
+ p2

r

)

, (3.6)

and the equations of motion are obtained as

ṙ =
pr

Q
, θ̇ =

pθ

r2Q
, (3.7)

ṗr = −
∂h

∂r
, ṗθ = −

∂h

∂θ
. (3.8)

These equations are convenient to find the baryonium vertex solution as seen below.

Before giving explicit solution, we show how the type of solutions is controlled by h.

From the definition of h given in eq. (3.2), we obtain

p2
θ

r2
+ p2

r =

(

R

r

)4 (

r4 + q

R4
Vν − h2

)

(3.9)

then from the reality of the solution, the next constraint is obtained

r4 + q

R4
Vν ≥ h2 . (3.10)

At the end points, x = x±, θ = π and r could become large, however r takes its minimum

r ≃ r0 at the mid point x = 0. Expressing as θ|x=0 = θ0 at this point, the value of θ0 is

obtained by solving the equation,

r40 + q

R4
Vν,θ0

= h2 . (3.11)

– 6 –
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This equation has two solutions for θ0 when h is large as shown in the figure 1, but there

is one or no solution for small h. The solutions of the former (latter) case of large (small)

h are identified with the baryonium (baryon).

Consider the baryonium solution. From (3.11), r0 is given as

r0 =

(

R4h2

Vν(θ0)
− q

)1/4

. (3.12)

While the exact solutions are obtained by solving the above four Hamiton equa-

tions (3.7) and (3.8) as given below, we show an approximate solution in the region where

we can assume ṙ ∼ 0 and r ∼ r0 near x = 0. Under this assumption, we obtain from (3.9)

θ̇ = ±
r0
R4h

√

r40 + q
√

Vν(θ) − Vν(θ0) (3.13)

then we solve this as

x(θ) = ±

∫ θ

θ0

dθ
R4h

r0
√

r40 + q
√

Vν(θ) − Vν(θ0)
(3.14)

This solution is symmetric with respect to x = 0 axis in x-θ plane. The important point of

this approximate solution is that the solution runs from x = 0 to two opposite directions,

however they are going to the same pole on S5 but with different values of x. In order to see

the behavior of the solution far from θ0, we must solve the exact form of equations. Actually

we can find the solutions as stated above exactly, namely they satisfy this symmetry at all

θ even if the assumption imposed here is not satisfied.

Which pole, θ = 0 or π, is chosen depends on the value of θ0. Notice that Vν(θ) has a

minimum at θc which is given as a slolution of

πν = θc − sin θc cos θc . (3.15)

and we find the minimum value as Vν(θc) = sin6(θc). This implies that the pole θ = 0

(θ = π) is chosen for θ0 < θc (θ0 > θc). This is understood well from the figure 1. We notice

however that the number of θ0 depends on the value of h as seen for ν = 0.2 as seen in the

figure 1. The situation is however changed by the value of h to find two θ0 also for ν = 0.2.

But for the case of ν = 0, there is only one θ0 for any value of h. In this case, the

baryonium is constructed by N -quarks and anti-N -quarks attached at each end points. In

other words, we obtain a bound state of baryon and anti-baryon without any loss of quark

and anti-quark by their pair annihilation.

On the other hand, for the case of ν = 1/N , we expect another interesting baryonium

configuration which is constructed by one quark and one anti-quark. This state is very

similar to the usual mesons, but it is different from them in the point that the D5 vertex

is included except for a quark and an anti-quark pair in this state.

Numerical solutions. Here we give the explicit baryonium solutions mentioned above.

The equations are solved numerically since it would be impossible to solve them analytically.

– 7 –
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Figure 2. The typical D5/D5 solution for q = 0.3, ν = 0.5 at h = −1 and θ0 = 1.6708. The

boundary conditions are pr(0) = pθ(0) = 0.
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Figure 3. The 3d graphic of D5/D5 solution given in the figure 2 for q = 0.3, ν = 0.5 at h = −1

and θ0 = 1.6708.

Firstly, we give a way to obtain the symmetric solutions. It is convenient to set the following

boundary conditions at x = 0 as

θ(0) = θ0 , r(0) = r0 , and pr(0) = pθ(0) = 0 (3.16)

They are given as follows. First, an appropriate θ0 is given for fixed h, then r0 is determined

by the above relation (3.12). The last two conditions, pr(0) = pθ(0) = 0, are necessary to

obtain a baryonium solution which is symmetric with respect to x = 0 axis.

An explicit example of the baryonium solution is obtained for ν = 0.5, h = −1 and

θ0 = 1.6708 under the above boundary conditions (3.16). The results are shown in the

figures 2 and 3. From the figure 2, we can easily understand the fact that this solution is

interpreted as the D5/D5 bound state solution. This kind of solutions can be obtained at

any ν, and it can be considered as the vertex part of a baryonium of (1 − ν)N quarks and

(1 − ν)N ant-quarks which are attached at each end point of the vertex for general ν.

Here, in the figure 4, we show the ν = 0.7 case as an example.
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Figure 4. D5/D̄5 solution for q = 0.3, ν = 0.7 at h = −1 and θ0 = 1.9962. The boundary

conditions are pr(0) = pθ(0) = 0.

-0.5 0.0 0.5
x

2

4

6

8

10

12

14

rHxL

-0.5 0.5
x

0.5

1.0

1.5

2.0

2.5

3.0

ΘHxL

Figure 5. The typical D5/D5 solution for q = 0.3, ν = 0.5 at h = −1 and θ0 = 1.6708. The

boundary conditions are pr(0) = 0, pθ(0) = 10−4.

Asymmetric solution. While the symmetric solutions are examined above, the various

asymmetric solutions are also obtained when we solve the same equations with a slightly

different boundary conditions from the one of the symmetric solutions. For example, they

are obtained by changing the boundary conditions, (3.16). These solutions are also re-

garded as the baryonium since they connect two cusps in the same side, at θ = π (or at 0)

at different x.

An example of a little asymmetric solution is shown in the figure 5, where boundary

conditions are changed to pr(0) = 0 and pθ(0) = 10−4.

In general, the energy of the asymmetric solution becomes higher than the symmetric

one. In this sense, the stable configurations can be considered as the maximally symmetric

one. Then, we consider hereafter symmetric solutions.

Another kind of solution obtained by a different boundary conditions is the one called

as the split baryon, which represents a baryon vertex. We give comments to this solution

in the next section.
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Figure 6. The left: The normalized vetex energy Un = U/( N

3π2α′
) versus its length in the x-direction

for D5/D5 solution for ν = 0.5, q = 0.3, R = 1 and h = −1. The line represents Un = 1.48L. The

right: The equi-potential curves in (−h,L) plane. The point A denotes the bottom of the potential.

Stability of the baryonium vertex. In the next, we study the stability of the bary-

onium solution obtained above. From the viewpoint of energy, we concentrate on the

symmetric vertex solutions, which are discriminated by its length L. Here L is defined as

L ≡ x+(π) − x−(π) , (3.17)

where we assume x+(π) > x−(π). Depending on the boundary value θ0, both the L and

the vertex energy U , which is given by (3.1), vary. So, by varying θ0 for fixed h, the relation

between U and L is examined for the symmetric solutions. This relation could give us a

critical check for the stability of the baryonium configuration.

The numerical results of U and L for h = −1 and ν = 0.5 are shown in the left hand

side of figure 6, where the normalized energy density, Un = U/( N
3π2α′ ), is shown instead of

U . From this we can see that a clear minimum is found at definite and finite value of L.

Namely, the state for large L and also for small L needs large energy to form it. Especially,

the latter fact means that the baryonium vertex does not vanish to L = 0. For other values

of h, similar U -L relations are expected and this is assured as follows.

Here, U depends on the two parameters h (or r0) and θ0 except for the external param-

eters R and q. Then we can write as U = U(h, r0) or U = U(h, θ0). Meanwhile it is possible

to replace one of the parameters by a physical quantity, for example L, as U = U(h,L).

In order to assure the minimum of U in the two dimensional parameter space, we

show the equi-potential curves (contour for U) in the h-L plane. The numerical results are

shown in the right hand side of the figure 6. From this, we find a minimum does exist near

the point A, and we find that the minimum given in the left figure is near the same L of
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point A. In general, we can consider many kinds of paths in this plane to study similar

U -L relation along it.

From the above results, we could read the following points.

(i) The energy density U has a minimum at a finite L. This implies the stability of

the baryonium configuration against the tachyon, which would appear as strings

connecting between D5 and anti-D5 branes. The mass square of this string is given

as L2/R4 − 1/(2πα′) [24], then it is stable for enough large L. Here the size of L is

measured by the scale R, the AdS5 radius, so we can set the parameters to satisfy

the inequality,

L2/R4 >
1

2πα′
, (3.18)

at least around the L where U is minimum.

(ii) Secondly, at large L, U increase linearly with respect to L, and we can approximate

its behavior as

U = τBL . (3.19)

where τB denotes the tension of the baryonium vertex. The value in the case given

in the figure 6 is evaluated and shown by a line. However, we must notice that the

above result is obtained for h = −1 and τB depends on h as seen from the right

hand figure of U(h,L). So we must be careful to study the tension of the baryonium

vertex. On this point, we do not discuss furthermore.

4 Baryonium and split baryon

As discussed in [11, 18], the baryon vertex has two types of solutions, that is, the point

and split one. The latter is similar to baryonium vertex in the sense that it has a finite

length in our space.

As mentioned above, the baryon vertex configurations are also obtained by solving the

same equations with somewhat different boundary conditions. As given in [18, 19], an easy

way to obtain the baryon vertex, which extends also in the x-direction with the two end

points x(π) and x(0), is as follows. First, set the boundary condition at θ = θc, where θc

is the minimum point of Vν(θ) as given in (3.15), as

pθ|θ=θc
= η 6= 0 , pr|θ=θc

= 0 . (4.1)

This boundary condition is necessary to embed the D5 brane on the whole region of S5.

In other words, the polar angle θ must cover the whole range 0 ≤ θ ≤ π, and this becomes

possible under the condition η 6= 0 in (4.1). This is the important point to identify the

obtained configuration with the baryon vertex. Namely, the two end points are at different

polar angles, θ = 0 and θ = π.

For the split baryon vertex obtained in this way, we examine its energy. Roughly

speaking, its configuration can be separated to the two parts of extending to x and to r

directions. And each part shears the energy of the vertex. We find that the split baryon

– 11 –



J
H
E
P
0
4
(
2
0
0
9
)
0
4
1

vertex can be smoothly deformed to the point vertex by suppressing its energy. Then the

configuration of minimum energy is realized by the point vertex solution r = q1/4 [18, 19].

This point is the important difference from the case of the baryonium, which could not be

pushed to a point in spite of the fact that the baryonium is made of D5/D5.

As for the total mass of the baryon or baryonium, we must add F-strings under the

appropriate conditions called as no force condition [18]. In this case, we could find that

the minimum energy of split baryon is realized when the length of the F-strings vanishes

but the vertex length is finite.

Similar situation is also expected for the case of the baryonium. We examined the

energy of baryonium for ν = 0.5, q = 0.3, R = 1, rmax = 10 and h = −1. Then we could

find that the minimum of the energy is found when the F-string length vanishes as in the

split baryon. However the details of the analyses are not given here. We will give them in

the near future.

5 Summary and discussion

We find a baryonium solution, which can be interpreted as bound state of baryon and

anti-baryon, by solving the equations of motion for the D5 brane action. The reason why

the bound state D5/D5 is obtained from the D5 brane action is that the action used to

solve the equations contains the displacement flux operator D in the squared form D2.

This fact enables us to obtain the baryonium configuration, which is made by connecting

a D5 brane and its anti-brane, from a D5 brane action which we used.

The configuration of the baryonium vertex looks like a string in our three dimensional

space and we find that its size or length L. Its energy U depends on the length L, and

we can show the minimum of U is realized at finite L. Then the size is kept finite in its

stable state, and we could assure that its configuration in the bulk is in a form that the

D5 and D5 are separated enough not to be destabilized by the tachyon. Then we can say

that the baryonium state found here would be stable and it would be difficult to observe

its decay into mesons. This would be related to the selection rule for hadronic decay and

the resultant narrow width of the baryonium [25].

The baryonium vertex solution given here is similar to a baryon vertex configuration

which also looks like a string in our three dimensional space. And they both are obtained

from the same equations of motion. However, one of the values of the displacement D at

the two cusps for the baryonium is different from the baryon. The sum of D at the two

cusps is zero for the baryonium, but it is N for the baryon. The energy minimum for

the baryon is realized for L = 0, which looks like a point in our space. Meanwhile, its

configuration looks string like in the bulk.

A real baryonium should be made of the vertex and fundamental strings attached at

cusps as performed in the case of baryons. Then the mass spectra for the baryonium are

examined to compare the spectra given in recent experiments [26]. The tetra-quark meson

corresponds to the baryonium of ν = 1/3 and N = 3. We can estimate the mass spectrum

of this state. This would be given in the near future.
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A Reparametrization invariant formulation

Here we show another formulation of solving the equations of motion derived from (2.9)

used in [11, 18]. Firstly, rewrite (2.9) in terms of a general worldvolume parameter s defined

by functions θ = θ(s), r = r(s), x = x(s) as:

U =
N

3π2α′

∫

ds eΦ/2
√

r2θ̇2 + ṙ2 + (r/R)4ẋ2
√

Vν(θ), (A.1)

where dots denote derivatives with respect to s. Then the momenta conjugate to r, θ and

x are given as

pr = ṙ∆, pθ = r2θ̇∆, px = (r/R)4ẋ∆, ∆ = eΦ/2

√

Vν(θ)
√

r2θ̇2 + ṙ2 + (r/R)4ẋ2

. (A.2)

Since the Hamiltonian that follows from the action (3.1) vanishes identically due to

reparametrization invariance in s. Then we consider the following identity

2H̃ = p2
r +

p2
θ

r2
+
R4

r4
p2

x − (Vν(θ)) e
Φ = 0 . (A.3)

Regarding this constraint as a new Hamiltonian, we obtain the following canonical equa-

tions of motion,

ṙ =pr , ṗr =
2

r5
p2

xR
4 +

p2
θ

r3
+

1

2
(Vν(θ)) e

Φ∂rΦ, (A.4)

θ̇ =
pθ

r2
, ṗθ = − 6 sin4 θ (πν − θ + sin θ cos θ) eΦ, (A.5)

ẋ =
R4

r4
px, ṗx =0 (A.6)

The initial conditions should be chosen such that H̃ = 0. By solving these equations, we

could find the same solutions given above.

B Tensions at cups

Here we calculate the tensions at the cusps [18, 19, 27]. In the present model the tension

has r-component and x-component generally. Denoting r1 = r(π) and x1± = x±(π), where

x1− < 0, and x1+ > 0, the tensions are given by,

δU

δr1
=

(1 − ν)N

2πα′

eΦ(r1)/2r′1
√

r21 + r′21 + (r1/R)4x′21±

,
δU

δx1±
=

(1 − ν)N

2πα′

eΦ(r1)/2(r1/R)4x′1±
√

r21 + r′21 + (r1/R)4x′21±

.

(B.1)

In the above equation The factor (1 − ν) comes from |D(ν, θ = π)|.

On the other hand, tension of F-string is derived from the following action,

UF =
1

2πα′

∫ xmax

x1±

dx eΦ/2
√

r2x + (r/R)4 . (B.2)

– 13 –



J
H
E
P
0
4
(
2
0
0
9
)
0
4
1

where rx = ∂rx. Then the tension of the F-string is obtained as,

δUF

δr1
=

1

2πα′

eΦ(r1)/2r
(1)
x

√

r
(1)2
x + (r1/R)4

, (B.3)

To compare tensions, we take a “vertical limit”, namely, r′1 → ∞, r
(1)
x → ∞. Then the

following equality holds;
δU

δr1
= (1 − ν)N

δUF

δr1
. (B.4)

The tensions in the x-direction vanish in the vertical limit. The above equality means the

tension of the cusp equals to (1 − ν)N times that of F-string automatically in the vertical

limit in the case of q > 0.

Other case except vertical limit, the following no-force condtion,

δU

δr1
= (1 − ν)N

δUF

δr1
,

δU

δx1±
= (1 − ν)N

δUF

δx1±
, (B.5)

assures the relation between tensions of cusps and F-strings.
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